APPENDIX B: EVALUATION AND SCORING CRITERIA

WATERSHED PROJECTS GRANT PROGRAM: LOCAL AND REGIONAL - ROUND 1

Projects submitted for the Watershed Projects Grant Program: Local and Regional - Round 1 funding can earn up to 100 points in scoring criteria. Each project will be scored and then ranked according to the following criteria:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Effectiveness in Minimizing Risk</strong></td>
<td></td>
</tr>
<tr>
<td>Risk reduction value</td>
<td>20</td>
</tr>
<tr>
<td>Future flood risk considerations</td>
<td>2</td>
</tr>
<tr>
<td>Upstream and downstream flood effects</td>
<td>2</td>
</tr>
<tr>
<td>Passivity and reliability</td>
<td>2</td>
</tr>
<tr>
<td>Multi-jurisdictional risk reduction benefits</td>
<td>4</td>
</tr>
<tr>
<td>Enhanced protection of critical lifelines</td>
<td>3</td>
</tr>
<tr>
<td>Avoided damages/losses</td>
<td>2</td>
</tr>
<tr>
<td>Adaptability to higher flood levels</td>
<td>2</td>
</tr>
<tr>
<td>Replicability</td>
<td>2</td>
</tr>
<tr>
<td>Project design life</td>
<td>3</td>
</tr>
<tr>
<td>Historical/archeological/geological impacts</td>
<td>2</td>
</tr>
<tr>
<td><strong>Project Costs &amp; Project Implementation</strong></td>
<td>13</td>
</tr>
<tr>
<td>Fund match</td>
<td>1</td>
</tr>
<tr>
<td>Annual costs</td>
<td>2</td>
</tr>
<tr>
<td>Implementation timeframe</td>
<td>2</td>
</tr>
<tr>
<td>Project stage of development</td>
<td>3</td>
</tr>
<tr>
<td>Operations and maintenance</td>
<td>1</td>
</tr>
<tr>
<td>Consistency with other projects or plans</td>
<td>1</td>
</tr>
<tr>
<td>Applicant capacity/previous experience in managing federal grant funding</td>
<td>3</td>
</tr>
</tbody>
</table>

1 Subject to change based on HUD’s final approval of the state’s CDBG-MIT Action Plan.
## PROJECT APPLICATION EVALUATION CRITERIA – ROUND 1 (CONT.)
### - 100 point maximum -

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Benefits</td>
<td>12</td>
</tr>
<tr>
<td>Benefit to low and moderate income populations</td>
<td>7</td>
</tr>
<tr>
<td>Economic opportunity</td>
<td>3</td>
</tr>
<tr>
<td>Outdoor recreational resources</td>
<td>2</td>
</tr>
<tr>
<td>Enhancement of Natural Functions</td>
<td>15</td>
</tr>
<tr>
<td>Natural hydrology improvements</td>
<td>5</td>
</tr>
<tr>
<td>Water quality improvements</td>
<td>5</td>
</tr>
<tr>
<td>Improvement to aquatic/floodplain habitat</td>
<td>5</td>
</tr>
<tr>
<td>Benefit to Most Impacted and Distressed Parishes</td>
<td>16</td>
</tr>
<tr>
<td>Benefit to multiple MIDs</td>
<td>16</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>100</strong></td>
</tr>
</tbody>
</table>

## EFFECTIVENESS IN MINIMIZING RISK
### - 44 point maximum -

<table>
<thead>
<tr>
<th>Criteria Description</th>
<th>Criteria Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk-reduction value</td>
<td>Details on analysis/calculation of risk are provided in Attachment 1</td>
<td>0-20:</td>
</tr>
<tr>
<td>Consideration of future flood risk</td>
<td>Uses best-available science, incorporating scenarios or probabilities of climate change, future development/land use change, and other factors relevant to the type of flood risk (e.g., sea level rise)</td>
<td>□ 2</td>
</tr>
<tr>
<td></td>
<td>Uses historical averages to project future conditions</td>
<td>□ 1</td>
</tr>
<tr>
<td>Upstream and downstream flood effects</td>
<td>Application provides documentation showing project reduces flood risk up and/or downstream of the project’s primary benefitting area</td>
<td>□ 2</td>
</tr>
<tr>
<td></td>
<td>Application provides documentation showing no flood risk impact up or downstream of the project’s primary benefitting area</td>
<td>□ 1</td>
</tr>
<tr>
<td>Passivity and reliability</td>
<td>Completely passive project that will require no regular operations and/or maintenance</td>
<td>□ 2</td>
</tr>
<tr>
<td></td>
<td>Automated (mechanical) response during a flood event</td>
<td>□ 1</td>
</tr>
<tr>
<td>Multi-jurisdictional flood risk reduction benefits</td>
<td>Project is the result of agreed collaboration between two or more parishes</td>
<td>□ 4</td>
</tr>
<tr>
<td></td>
<td>Project is the result of agreed collaboration between two or more municipal districts</td>
<td>□ 3</td>
</tr>
<tr>
<td></td>
<td>Project benefits are realized by two or more parishes</td>
<td>□ 2</td>
</tr>
</tbody>
</table>
### EFFECTIVENESS IN MINIMIZING RISK (CONT.)
- 44 point maximum -

<table>
<thead>
<tr>
<th>Criteria Description</th>
<th>Criteria Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced protection of critical facilities (e.g., hospitals, evacuation routes, emergency response facilities, power generation stations, etc.) and/or stabilization of essential community lifelines (e.g. transportation, communication, health, shelter, hazardous material, water, power)</td>
<td>Project will mitigate loss of service from one or more ASCE Category IV facilities(^2)</td>
<td>☐ 3</td>
</tr>
<tr>
<td></td>
<td>Project will mitigate loss of service from one or more ASCE Category III facilities(^3)</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>Project demonstrates a mitigation of risk to one or several community lifelines</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Avoided damages/losses (Avoided direct physical damage to built assets and agriculture - based on existing or approved permits for the built environment)</td>
<td>Expected losses avoided are greater than project capital and maintenance costs over the life of the project by a factor greater than two (Benefit cost ratio &gt;2)</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>Expected losses avoided are greater than project capital and maintenance costs over the life of the project by a factor greater than one (Benefit cost ratio &gt;1)</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Adaptability/flexibility</td>
<td>Method/installation can be modified to adapt to higher flood levels</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>Not adaptable, but does not impede future more protective solutions to higher flood levels</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Project design life (in accordance with FEMA standards(^4) or supporting documentation)</td>
<td>&gt; 50 years</td>
<td>☐ 3</td>
</tr>
<tr>
<td></td>
<td>30-49 years</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>15-29 years</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Replicability</td>
<td>Design that can be replicated/may facilitate initiation of other projects</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>Specialized for the site but provides lessons learned for other areas</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Historical/archeological/geological impacts</td>
<td>Application documents that the project will have a positive impact on special historical, archeological, geological or environmental sensitive areas</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>Application documents that the project will have no impact on special historical, archeological, geological, or environmental sensitive areas</td>
<td>☐ 1</td>
</tr>
</tbody>
</table>

\(^2\) ASCE Category IV: highest risk category, includes buildings and structures that if severely damaged, would reduce availability of essential community services necessary to cope with an emergency. Includes buildings such as hospitals, police and fire stations, emergency communication centers and facilities, and facilities containing hazardous materials. Includes public utility facilities required for emergency backup as Risk IV facilities, i.e. power generating stations, aviation control centers, water storage facilities and pump stations for fire suppression.

\(^3\) ASCE Category III: buildings and structures that house a large number of people in one place, or house people with limited mobility or ability to escape to a safe haven. Includes buildings such as schools, prisons, small healthcare facilities, universities. Can include utilities not considered Category IV.

\(^4\) OCD to provide details on FEMA Standards
## PROJECT COSTS & PROJECT IMPLEMENTATION
- 13 point maximum -

<table>
<thead>
<tr>
<th>Criteria Description</th>
<th>Criteria Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fund match</td>
<td>Documented commitment of 10% additional match funds for project</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Annual costs</td>
<td>Project annual maintenance cost is less than 0.5 percent of capital cost</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>Project annual maintenance cost is 0.5 to 1.5 percent of capital costs</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Implementation timeframe</td>
<td>Scheduled completion within two years of funding</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>Scheduled completion within three years of funding</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Project stage of development</td>
<td>Project is fully designed and permitted</td>
<td>☐ 3</td>
</tr>
<tr>
<td></td>
<td>Project is designed, but not yet permitted</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>Project is designed to a sufficient level of detail for regulatory review, with initial consultations complete, and provides clear direction for detailed project engineering and specifications</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Operations and maintenance plan</td>
<td>Submittal of operations and maintenance plan with identified long-term funding source, action steps, and responsibilities outlined in order to operate and maintain improvements</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Consistency with other plans or projects</td>
<td>Project is consistent with local capital improvement plan or is aligned with other federal, state, or local mitigation projects</td>
<td>☐ 1</td>
</tr>
<tr>
<td>Applicant capacity</td>
<td>Applicant has previous experience in managing federal grant funding.</td>
<td>☐ 3</td>
</tr>
</tbody>
</table>

## SOCIAL BENEFITS
- 12 point maximum -

<table>
<thead>
<tr>
<th>Criteria Description</th>
<th>Criteria Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit to Low- and Moderate-Income Population</td>
<td>Project demonstrates a direct positive benefit (in terms of risk reduction) to persons of low and moderate income. Applicant provides documentation that the project will benefit the residents of a primarily residential area where at least 51 percent of the residents are low- and moderate-income persons per HUD’s Updated LMISD or meets other LMI-benefit determination criteria.</td>
<td>☐ 7</td>
</tr>
<tr>
<td>Economic Opportunity</td>
<td>Project can document expected job creation and/or increased economic activity as a result of project benefits (not just through construction and maintenance) creates or retains jobs for low- and moderate-income persons.</td>
<td>☐ 3</td>
</tr>
<tr>
<td></td>
<td>Reduced risk of job loss expected as a result of the project</td>
<td>☐ 2</td>
</tr>
<tr>
<td>Outdoor Recreational Resources</td>
<td>Adds new and equitable recreational assets, greenways or trails, or recreational fields or programmed open space and nature preserves</td>
<td>☐ 2</td>
</tr>
<tr>
<td></td>
<td>Enhances existing recreational space</td>
<td>☐ 1</td>
</tr>
</tbody>
</table>
### ENHANCEMENT OF NATURAL FUNCTIONS
- **15 point maximum** -

<table>
<thead>
<tr>
<th>Criteria Description</th>
<th>Criteria Value</th>
<th>Points</th>
</tr>
</thead>
</table>
| Natural Hydrology Improvements  
(A project may provide flood storage and conveyance, reduce flood velocities, reduced peak flows, promote infiltration and aquifer recharge or reduce frequency and duration of low surface flows) | Application indicates that the project, once built/implemented, will alter quantity, frequency and duration of water flows in a manner that IMPROVES, ENHANCES or RESTORES floodplain, riverine and coastal ecosystem services and the human livelihood and well-being that depend on these services. | ☐ 5    |
|                       | Proposal indicates that the project, once built/implemented will alter quantity, frequency and duration of water flows in a manner that SUSTAINS floodplain, riverine and coastal ecosystem services and the human livelihood and well-being that depend on these services. | ☐ 1    |
| Water Quality  
(A project may reduce sedimentation, reduced nutrients and impurities from runoff, process organic wastes, or moderate temperature fluctuations) | Application indicates that the project, once built/implemented will IMPROVE, ENHANCE, or RESTORE water quality parameters critical for maintaining a healthy floodplain, riverine, and coastal environment. | ☐ 5    |
|                       | Application indicates that the project, once built/implemented WILL NOT IMPACT water quality parameters critical for maintaining a healthy floodplain, riverine, and coastal environment. | ☐ 3    |
| Aquatic/floodplain habitat value  
(A project may add rich alluvial soils to promote vegetative growth, maintain biodiversity, maintain integrity of ecosystems, provide breeding and feeding grounds, create enhanced waterfowl habitat or protect habitats for rare and endangered species) | Application indicates that the project, once built/implemented will restore/enhance and protect floodplain, riverine and coastal habitats suitable for ecologically, commercially and recreationally important species. | ☐ 5    |
|                       | Application indicates that the project, once built/implemented will have no impact on riverine and coastal habitats suitable for ecologically, commercially and recreationally important species. | ☐ 1    |

### BENEFIT TO MOST IMPACTED AND DISTRESSED PARISHES
- **16 point maximum** -

<table>
<thead>
<tr>
<th>Criteria Description</th>
<th>Criteria Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit to state or HUD-Identified MIDs</td>
<td>Project benefits three state or HUD-Identified MIDs</td>
<td>☐ 16</td>
</tr>
<tr>
<td></td>
<td>Project benefits two state or HUD-Identified MIDs</td>
<td>☐ 10</td>
</tr>
</tbody>
</table>
ATTACHMENT 1: EFFECTIVENESS METHODOLOGY

Effectiveness will be calculated based on a future with project compared to the current condition for non-coastal projects, and a future with project compared to “future without action” for coastal projects.

STEP 1:

Applicant should fill out the Benefit Cost Analysis worksheet to the best of their ability. Up to six design storm intervals will be considered (5-year, 10-year, 25-year, 50-year, 100-year, 500-year) when calculating the annual probability. All projects except non-structural projects are expected to have basic H&H modeling completed. For non-structural projects, the applicant may rely on historical storms. A historical storm would replace the closest design storm. For example, a 28-year storm would replace the 25-year design storm, with a corresponding probability of 0.0357. Projects with lower level of service than 500 years should provide their highest level of service.

<table>
<thead>
<tr>
<th>A</th>
<th>B (1/A)</th>
<th>C (prescribed recurrence interval event)</th>
<th>D (prescribed recurrence interval event)</th>
<th>E (C-D)</th>
<th>F (B*E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence interval</td>
<td>Likelihood</td>
<td># of Structures flooded by current condition/future without action</td>
<td># of Structures flooded by future with project</td>
<td># of structures protected by project</td>
<td>Weighted # of structures protected by prescribed recurrence interval event</td>
</tr>
<tr>
<td>5</td>
<td>.2</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>.1</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>0.04</td>
<td>20</td>
<td>5</td>
<td>15</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>.02</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>.01</td>
<td>125</td>
<td>115</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>500</td>
<td>.002</td>
<td>475</td>
<td>470</td>
<td>5</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Annual Probability: 3.01

STEP 2

Annual benefits (# structures) * Design Life (years) = Expected Benefits per Cost

The annualized benefits will be multiplied by the expected design life, and then divided by the total project costs to determine a total benefit per dollar amount. After all Round 1 applications have been submitted, LWI will normalize the effectiveness between projects submitted, and allocate 0-20 points per project accordingly.