

LA-FL Regional Watershed Management Webinar

March 31, 2021

Louisiana Office of Community Development St. Johns River Water Management District

> LOUISIANA **WATERSHED** INITIATIVE

working together for sustainability and resilience

AGENDA

1. Introduction

Pat Forbes, Executive Director Louisiana Office of Community Development

2. St. Johns River Water Management District

Presenters:

Marc von Canal

Environmental Resource Program Manager Division of Regulatory Services

Cammie Dewey

Environmental Resource Program Manager Bureau of Environmental Resource Permitting

Participants: Abby Johnson Intergovernmental Coordinator Government Affairs Division

3. Questions

Facilitated by: **David Lessinger**, Senior Advisor CSRS

Yanbing Jia Technical Program Manager Bureau of Watershed Management and Modeling

Alexandra Carter, LWI Program Manager Louisiana Office of Community Development

LOUISIANA WATERSHED INITIATIVE

WORKING TOGETHER FOR SUSTAINABILITY AND RESILIENCE

Protecting Florida's Water: An overview of the St. Johns River Water Management District

Marc von Canal

Environmental Resource Program Manager Bureau of Environmental Resource Regulation St. Johns River Water Management District

Who We Are

• 12,283 square miles Covers all or part of 18 counties in northeast and eastcentral Florida

St. Johns River Water Management District

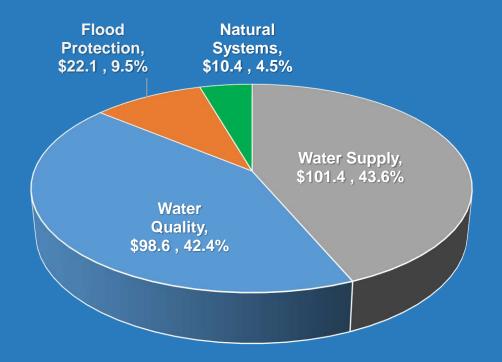
Pure	ant	CILICO	100 O KW
Duu	geu		mary

SOURCE OF FUNDS:	ALL FUNDS
Appropriated Fund Balance	\$ 26,577,667
Ad Valorem Taxes	90,783,700
Other District Revenues	6,058,600
Local	2,211,944
State	116,269,179
Federal	136,910
SOURCE OF FUNDS TOTAL	\$ 242,038,000
ISE OF FUNDS: Salaries and Benefits	\$ 49,467,885
Contracted Services	10,846,734
Operating Expenses	12,295,444
Operating Capital Outlay	1,590,114
Fixed Capital Outlay	
	19,987,362
Cooperative Funding	19,987,362 <u>147,850,461</u>

St. Johns River

Water supply

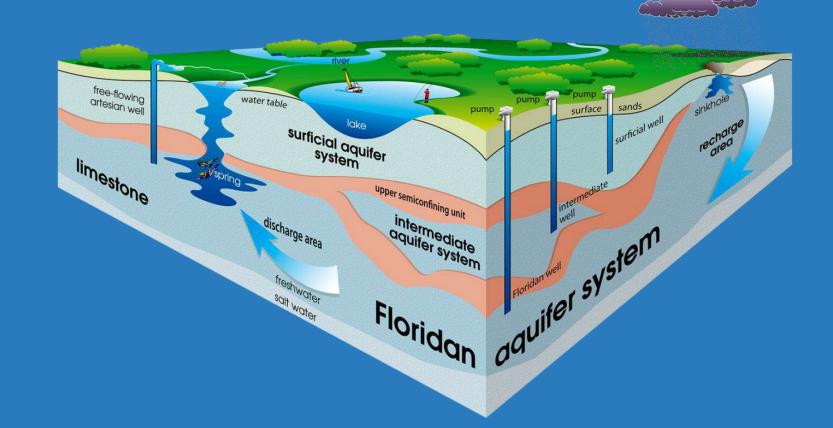
Flood protection



Water quality

Natural systems

District Budget by Core Mission Fiscal Year 2020-2021



The District's Fiscal Year 2020–2021 Adopted Budget is \$242 million, including \$9.6 million in Administrative Expenses

Our water in northeast and east-central Florida

• More than 90 percent comes from the Floridan aquifer system.

St. Johns River Water Management District

Water Supply Planning

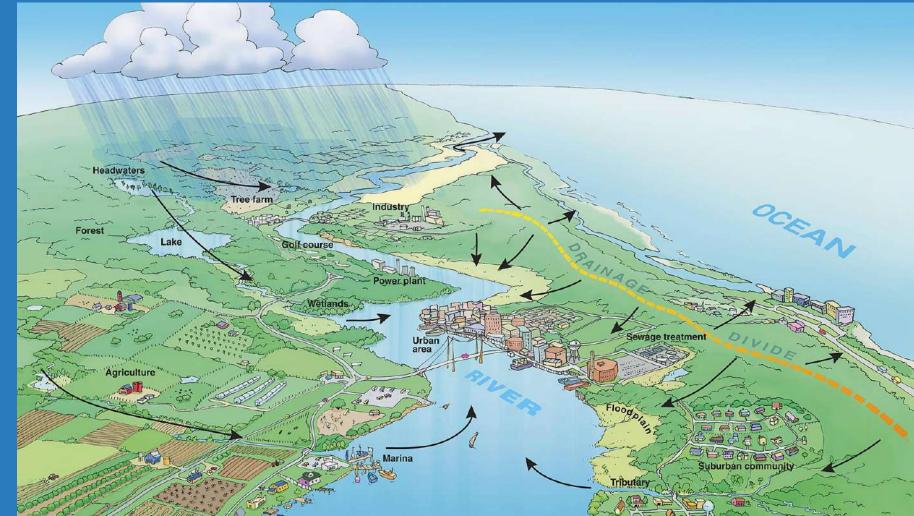
Districtwide water supply plan and regional plans
Looks 20 years out
Three regions

Water Conservation

	E Sounds
Common same:	E Sounds
Scientific name.	*
Plant type:	-Pieter celesi-
Hardinass sone (e.g.7a, 9b etc.).
Mature beight in feet.	
Flower polor	-Picasz obiest-
Soli moisture:	
pH	
Light range:	
Salt tolerande:	A1
Growth sale:	A3
Native:	AN 💌
tio, of results per page.	12

Alternative Water Supply Options

- Reclaimed water
- Stormwater capture
- Surface water
- Seawater


SJRWMD Cost-Share

- Since FY 2014 to 2020
 - SJRWMD awarded \$204.2 million
 - \$500.6 million in construction costs
- Estimated benefits:
 - Alternative water supply: 166.5 million gallons per day (mgd)
 - Water conserved: 20.7 mgd
 - Total Nitrogen reduction:2.2 million lbs/yr
 - Total Phosphorus reduction: 406,112 lbs/yr

A Typical Florida Watershed

St. Johns River Water Management District

Protecting our Rivers, Lakes and Streams

- Agriculture
- Industry
- Wastewater discharges
- Stormwater runoff

Decisions Based on Sound Science

Lake Apopka Marsh Flow-way

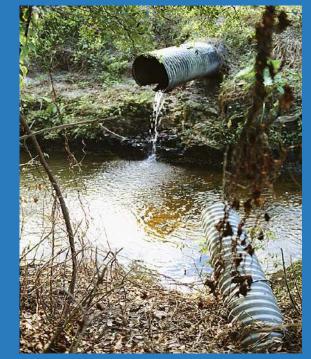
Crane Creek

Doctors Lake

Managing Public Lands

Permitting

Environmental Resource Permitting (ERP)


- ERP Rules are authorized by Florida Statute and described under Chapter 62-330, Florida Administrative Code (F.A.C.).
- Guidance for the design, criteria, and submittal of ERP applications is provided in the Applicant's Handbook and the Permit Information Manual.
- The specific criteria for individual permit issuance (those projects that do not qualify for an exemption or a general permit) are described in Section 62-330.301 and 302, F.A.C.

St. Johns River Water Management District

Individual ERP Criteria

- An applicant must provide reasonable assurance that the construction, alteration, operation, maintenance, removal, or abandonment of a system will not:
- (a) cause adverse water quantity impacts to receiving waters or adjacent lands;
- (b) cause adverse flooding to on or off-site properties;
- (c) cause adverse impacts to existing surface water storage and conveyance capabilities;
- (d) adversely impact the value of functions provided to fish and wildlife and listed species by wetlands and other surface waters;
- (e) adversely affect the quality of receiving waters to cause violation of water quality standards;
- (f) cause adverse secondary impacts to water resources;
- (g) adversely impact maintenance of surface or ground water levels or surface water flows;
- (h) cause adverse impacts to works of the District;

Public Interest Test for ERPs in Wetlands

- In addition to the previous criteria, projects requiring an individual ERP that are located in, on, or over wetlands or other surface waters must pass a public interest test.
- In any wetland or other surface water, the project must not be contrary to the public interest (i.e.: neutral or better); in designated Outstanding Florida Waters (OFW), the activity must be clearly in the public interest (i.e.: positive), based on these considerations:
- 1. public health, safety, or welfare of others;
- 2. conservation of fish and wildlife, including endangered or threatened species and their habitats;
- 3. navigation, flow of water, harmful erosion or shoaling;
- 4. fishing or recreational values or marine productivity in the vicinity;
- 5. temporary or permanent in nature;
- 6. historical and archaeological resources;
- 7. current condition and relative functions provided by affected area
- There are additional considerations for cumulative impacts, shellfish classified waters, and seawalls in estuaries.

The SJRWMD ERP Regulatory Team

- The Bureau of Environmental Resource Regulation (BERR) is within the Division or Regulatory Services (DRS) and administers the ERP Program.
- The Review, Compliance and Mitigation Banking and FDOT Mitigation Program Teams are composed of approximately 50 Scientists and Engineers and their leadership team.
- In 2020, the Bureau issued over 3,200 permits.

Marc von Canal mvoncanal@sjrwmd.com

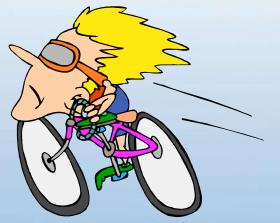
www.sjrwmd.com

Statewide ERP (SWERP) Permitting 101 SJRWMD

Cammie Dewey, PE Environmental Resource Program Manager St. Johns River WMD

Thresholds

- ERP Thresholds (62-330.020, F.A.C.)
 - > 4,000sf of impervious/semi-impervious surface subject to vehicular traffic
 - > 9,000sf of impervious/semi-impervious surface
 - > Project area of 5 acres or more
 - > Impound more than 40 ac-ft of water
 - > Any project in, on, or over wetlands or other surface waters
 - > Additional listed, plus any District-specific threshold



Authorization Types

- Exemptions (62-330.050, 62-330.051, 62.330.0511, F.A.C., Section 1.3 Applicant's Handbook Volume II, and 373.406 F.S.)
- General Permits (62-330.402, F.A.C.)
- Individual Permits (62-330.054, F.A.C.)

Individual Permit Application Submittals

- Coordination/Pre-App mtg
- e-permitting
- Water Quality
- Water Quantity/Flooding
- Wetlands/Surface Waters
- Special Hydrologic Basins
- Operation & Maintenance

Water Quality

- Traditional Treatment BMPs
- Impaired waters
- Low Impact Development (LID)

Water Quantity

- Mean annual storm event
- 10-year, 24-hour storm event
- 25-year, 24-hour storm event
- 25-year, 96-hour storm event
- Floodplain
 - > 10-year floodplain Districtwide
 - > 100-year floodplain Special Hydrologic Basins
 - > Traversing works

Special Hydrologic Basins

- Upper St. Johns River Hydrologic Basin, 12/7/83
- Ocklawaha River Hydrologic Basin, 12/7/83
- Wekiva River Hydrologic Basin, 5/17/87; 8/30/88
- Wekiva Recharge Protection Basin, 5/17/87; 8/30/88; 12/3/06
- Econlockhatchee River Hydrologic Basin, 4/3/91
- Sensitive Karst Area Basin, 9/25/91
- Tomoka River and Spruce Creek Hydrologic Basins, 11/25/98
- Lake Apopka Hydrologic Basin, 3/7/03

Long-term O & M

- Section 12 AH Vol I
- As-Built certification by a PE
- Long-term inspections

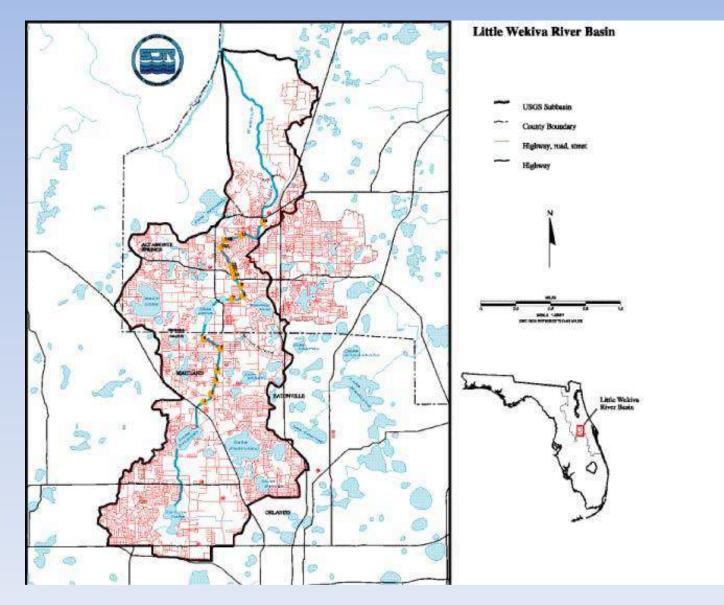
Coordination with Local Governments

- Regional versus Local requirements
- Coordination during review and compliance
- Local government projects
 - Restoration projects
 - Flooding and/or water quality retrofit projects
 - Public lands access improvements

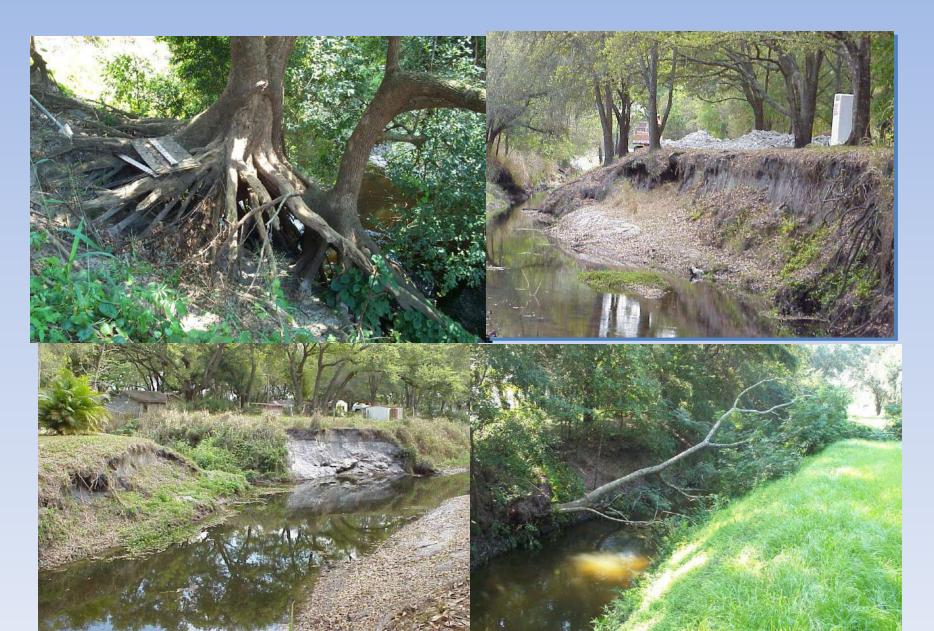
Thank You

Cammie Dewey, P.E. cdewey@sjrwmd.com

Urban River Restoration – The Elba Way Erosion Control Improvements



Little Wekiva River Basin



Little Wekiva River Erosion Control History

- Urban streams often have to handle flows far in excess of their capacity

 Little Wekiva River (LWR) is no exception
- Hydraulic models and Sediment & Geomorphic model identified river bed erosion as major issue –drove goal to develop profile slope
- Master Plan identified 16 projects
- Elba Way Dredge and Grade Project became number 15

LWR – Typical Impacts of Erosion

H&H and Geomorphologic Models

- AdICPR with its two modules was used to model the entire watershed of the LWR work done by Singhofen & Associates under contract with Woodward-Clyde
- A geomorphologic model developed by URS-Woodward-Clyde in cooperation with St. Antony Falls, University of Minnesota, was used to model the river sediment transport
- A stable riverbed slope of 0.075% was established for all improvements

Urban River Restoration – The Elba Way Erosion Control Improvements

- The Little Wekiva River over the past 20 years has been subject of numerous erosion and sediment control improvement projects
- These improvements include bank restoration, widening of the hydraulic cross section, implementation of grade control structures, sedimentation ponds, and bank stabilization

Project Extent

Elba Way: Pre-project Conditions

Project H&H Model

- The AdICPR model was updated to the most recent windows version
- All river improvements were also added (i.e. other upstream erosion control projects)
- Elba Way proposed improvements were added to the model

Rainfall Events

- Rainfall for storm events with 24-hr duration and with the following return periods; mean annual, 10-yr, 25-yr, 50-yr and 100-yr were simulated
- Rainfall type used was SCS Type II (Florida Modified)
- Rainfall totals ranged from 4.5 to 10.6 inches (from mean annual to 100yr storm event)

Streamflow Velocities

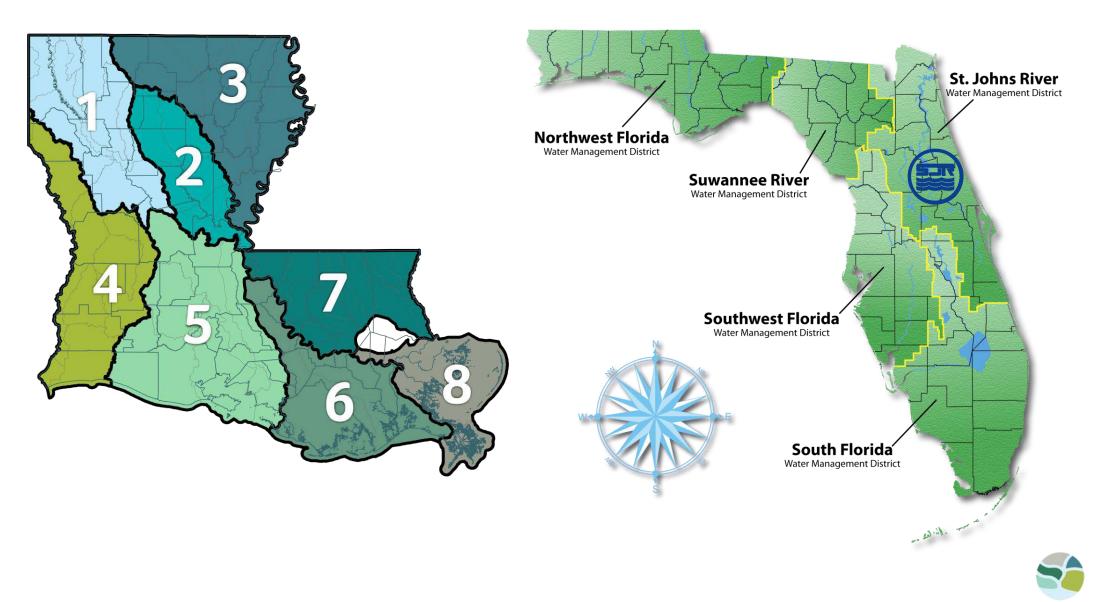
- Mean annual modeled velocities ranged from 1.1 ft/s (downstream) to 2.8 ft/s (upstream)
- Under the 25-yr return period storm modeled velocities ranged from 1.6 ft/s (downstream) to 3.4 ft/s (upstream)
- For the 100-yr event modeled velocities ranged from 1.8 ft/s (downstream) to 4.4 ft/s (upstream)

Selection of Construction Materials

- Cost was the primary controlling factor in the selection of the revetments and control structures
- Alternative analyzed revetments were gabions, Renomattresses, rip-rap, cable block, and grass
- The final design considered a combination of rip-rap and grass, grass lined banks, fixing the existing cable block, and the addition of two gabion weirs
- The upstream weir will function as a grade control structure while the downstream will control flows to allow a pool to be created

After construction -Mid-section of the project area

Downstream weir and final river section: •Wider cross section •Flatter slopes •Trees along bank


Recommendations

- Work in sections that are manageable heavy rain and high flows present a problem to any cleared area
- Size bypass pumps in accordance with normal flow <u>and</u> for higher storm event flows
- Have contingency plans

Conclusions

- Projects such as Elba Way require planning
- Coordination between stakeholders
- Community involvement (public meetings, involvement of local politicians and authorities)
- More importantly, projects of this magnitude take time in all stages of planning, designing, and construction

Questions

Contact Us

Marc von Canal <u>mvoncanal@sjrwmd.com</u>

Cammie Dewey, P.E. <u>cdewey@sjrwmd.com</u>

Abby Johnson ajohnson@sjrwmd.com

Yanbing Jia yjia@sjrwmd.com

- f @LAWATERSHEDINITIATIVE
- ♥ @LAWATERSHED
- @LAWATERSHED
- in LOUISIANA WATERSHED INITIATIVE
- WATERSHED@LA.GOV

THANK YOU